- :PR₃ very important ligands
 - σ-donors
 - π -acceptors

• For years, it was assumed that π -backdonation occurred from the metal into empty d-orbitals on phosphorus.

• Actually: π -backdonation occurs into MOs formed by combination of two d-orbitals on phosphorus and the σ^* orbitals involved in P-R bonding.

•Each acceptor MO has 2 lobes (similar to a d-orbital) but is antibonding with respect to the P-R bond

•As the amount of π -backdonation increases, the length of P-R increases. This can be observed in the crystal structures of phosphine complexes

Average Co-P	221.8 pm	223.0 pm
Average P-C	184.6 pm	182.9 pm

• A huge variety of phosphines have been prepared, many of which are commercially available. One can just choose a phosphine with the desired steric (size) and electronic properties (σ -donation/ π -acceptance).

• The size of ligands (not just phosphines) can be measured using the concept of a cone angle (Chadwick A. Tolman, *Chem. Rev.*, **1977**, 313).

- TM-P distance fixed at 228 pm to standardize the cone angle (θ).

- The cone encompases the van der Waals radii of the outermost atoms of the ligand.

Cone angles measured by crystallography (although TM-P bond distance fixed at 228 pm)

• Electronic properties measured by IR and electrochemistry – v(CO) and $E_{1/2}$ for oxidation or reduction measured for a large series of carbonyl phosphine complexes with different PR₃ (*e.g.* [Ni(CO)₃(PR₃)] or [CpFeMe(CO)(PR₃)]) [ϕ = old fashioned abbreviation for phenyl]

• Electronic properties measured by IR and electrochemistry – v(CO) and $E_{1/2}$ for oxidation or reduction measured for a large series of carbonyl phosphine complexes with different PR₃ (*e.g.* [Ni(CO)₃(PR₃)] or [CpFeMe(CO)(PR₃)]) [ϕ = old fashioned abbreviation for phenyl]

Bite angles for bidentate ligands

Bite angle can have a profound effect on the rate and selectivity of metal catalyzed reactions

Bite angles for bidentate ligands

Table 6. Results of the Hydroformylation of 1-Octene at 80 °C Using Xantphos Ligands (11) ^a								
ligand	β_n^b (deg)	<i>l:b</i> ratio ^c	linear aldehyde ^c (%)	isomer ^c (%)	TOF ^{c,d}	ratio ee:ae		
11b 11c 11d 11e 11f 11g 11h 11i	102 108 108 110 111 113 114 114	8.5 14.6 34.6 50.0 52.2 49.8 50.6 69.4	88.2 89.7 94.3 93.2 94.5 94.3 94.3 94.9	1.4 4.2 3.0 4.9 3.6 3.8 3.9 3.7	$36.9 \\ 74.2 \\ 81.0 \\ 110 \\ 187 \\ 162 \\ 154 \\ 160$	3:7 7:3 6:4 7:3 7:3 8:2 7:3 8:2		
11j	120.6	50.2	96.5	1.6	343	6:4		

Bite angles for bidentate ligands

Phosphines/Arsines in early TM and lanthanide chemistry

- PR₃ excellent ligands for soft late transition metals
- PR₃ typically NOT v. suitable to form complexes with hard early TMs (PR₃ > PAr₃)
- AsR₃ even worse, and early TM SbR₃ or BiR₃ complexes unknown
- NPh₃ useless as a ligand for early or late TMs (terrible donor), NMe₃ OK for early TMs

Phosphines/Arsines in early TM and lanthanide chemistry

Rare early TM (Ti, Zr, Hf) arsine complexes
G. Reid (U Southampton), DT, 2004, 3005 & EJIC, 2001, 2927