Phosphines

: PR_{3} - very important ligands

- σ-donors
- π-acceptors
- For years, it was assumed that π-backdonation occurred from the metal into empty d-orbitals on phosphorus.
- Actually: π-backdonation occurs into MOs formed by combination of two d-orbitals on phosphorus and the σ^{*} orbitals involved in P-R bonding.

-Each acceptor MO has 2 lobes (similar to a d-orbital) but is antibonding with respect to the P-R bond
-As the amount of π-backdonation increases, the length of P - R increases. This can be observed in the crystal structures of phosphine complexes

Phosphines

Average Co-P	221.8 pm	223.0 pm
Average P-C	184.6 pm	182.9 pm

- A huge variety of phosphines have been prepared, many of which are commercially available. One can just choose a phosphine with the desired steric (size) and electronic properties (σ-donation/ π-acceptance).

Phosphines

- The size of ligands (not just phosphines) can be measured using the concept of a cone angle (Chadwick A. Tolman, Chem. Rev., 1977, 313).

- TM-P distance fixed at 228 pm to standardize the cone angle (θ).
- The cone encompases the van der Waals radii of the outermost atoms of the ligand.

Cone angles measured by crystallography (although TM-P bond distance fixed at 228 pm)

- Electronic properties measured by IR and electrochemistry - v(CO) and $\mathrm{E}_{1 / 2}$ for oxidation or reduction measured for a large series of carbonyl phosphine complexes with different $\mathrm{PR}_{3}\left(e . g\right.$. $\left[\mathrm{Ni}(\mathrm{CO})_{3}\left(\mathrm{PR}_{3}\right)\right]$ or $\left.\left[\mathrm{CpFeMe}(\mathrm{CO})\left(\mathrm{PR}_{3}\right)\right]\right) \quad[\phi=$ old fashioned abbreviation for phenyl]

Phosphines

- Electronic properties measured by IR and electrochemistry - v(CO) and $\mathrm{E}_{1 / 2}$ for oxidation or reduction measured for a large series of carbonyl phosphine complexes with different $\mathrm{PR}_{3}\left(\right.$ e.g. $\left[\mathrm{Ni}(\mathrm{CO})_{3}\left(\mathrm{PR}_{3}\right)\right]$ or [CpFeMe(CO) $\left.\left(\mathrm{PR}_{3}\right)\right]$) [$\phi=$ old fashioned abbreviation for phenyl]

Bite angles for bidentate ligands

Bite angle can have a profound effect on the rate and selectivity of metal catalyzed reactions

Bite angles for bidentate ligands

Table 6. Results of the Hydroformylation of 1-Octene at $80^{\circ} \mathrm{C}$ Using Xantphos Ligands (11) ${ }^{a}$

ligand	$\beta_{\mathrm{n}}{ }^{b}$ (deg)	$l: b$ ratio c	linear aldehyde $^{c}(\%)$	isomer c $(\%)$	TOF $^{c, d}$	ratio ee:ae
11b	102	8.5	88.2	1.4	36.9	3.7
11c	108	14.6	89.7	4.2	74.2	$7: 3$
11d	108	34.6	94.3	3.0	81.0	$6: 4$
11e	110	50.0	93.2	4.9	110	$7: 3$
11f	111	52.2	94.5	3.6	187	$7: 3$
11g	113	49.8	94.3	3.8	162	$8: 2$
11h	114	50.6	94.3	3.9	154	$7: 3$
11i	114	69.4	94.9	3.7	160	$8: 2$
11j	120.6	50.2	96.5	1.6	343	$6: 4$

Bite angles for bidentate ligands

Phosphines/Arsines in early TM and lanthanide chemistry

- PR_{3} excellent ligands for soft late transition metals
- PR_{3} typically NOT v. suitable to form complexes with hard early TMs $\left(\mathrm{PR}_{3}\right.$ $>\mathrm{PAr}_{3}$)
- AsR R_{3} even worse, and early $\mathrm{TM}^{2} \mathrm{SbR}_{3}$ or BiR_{3} complexes unknown
- NPh_{3} useless as a ligand for early or late TMs (terrible donor), $\mathrm{NMe}_{3} \mathrm{OK}$ for early TMs

Phosphines/Arsines in early TM and lanthanide chemistry

-Rare early TM (Ti, Zr, Hf) arsine complexes
G. Reid (U Southampton), DT, 2004, 3005 \& EJIC, 2001, 2927

